Evaluation Report

Air Consumption Reduction Technology (Energy Saving Effect Evaluation using Mecha Swing Nozzle)

> Provided by Company P (CO2 Reduction Promotion Section, Environmental Promotion Group)

1. Introduction

2. Mecha Swing Nozzle

Purpose

To reduce the amount of compressed air used in "Air Blow", a device called "Mecha Swing Nozzle" was manufactured by GA-REW.

This examination will help us to evaluate these technologies and spread them within the company.

Mecha Swing Nozzle

2. Movement of the Mecha Swing Nozzle

What is the Mecha Swing Nozzle?

Pic.1. Movement of the Mecha Swing Nozzle (at Air Pressure : 0.4 MPa)

2. Movement Analysis of the Mecha Swing Nozzle

 Evaluation of the set pressure and the number of swings persecond of the Mecha Swing Nozzle (measured by a high speed camera)

Table 1. Number of Swings

Pressure [MPa]	Number of Swings [times/sec]
0.2	6
0.3	9
0.4	11

Pic.2. High Speed Camera

Graph 1. Evaluation results of the set pressure and the number of swings of the Mecha Swing Nozzle

2. Air Consumption of the Mecha Swing Nozzle

Devices used for the test

Pic.3. Testing Devices

Mecha Swing Nozzle Model : MS-70 by GA-REW Co., Ltd. Nozzle diameter : 2mm (Single hole) Flat Nozzle (manufactured by company A)

Evaluation Method of Air Pressure and Air Flow Rate (Air Pressure is controlled by a Regulator)

Img.3. Schematic Diagram of the Evaluation Test

2. Evaluation of the Mecha Swing Nozzle

Table 2. Air Pressure and Air Flow Rate

Nozzle Type	Setting Pressure (MPa)	Measured Pressure (MPa)	Flow Rate (L/min(ANR))	
Flat	0.2	0.185	326	
Nozzle	0.3	0.277	438	
	0.4	0.371	544	
Mech	0.2	0.192	92	
Swing Nozzle	0.3	0.292	123	
	0.4	0.390	154	

Table 3. Difference of Air Flow Rate

Setting	Air	Mecha Swing		
Pressure (MPa)	Flat Nozzle	Mecha Swing Nozzle	Difference	Nozzle / Flat Nozzle
0.2	326	92	234	0.28
0.3	438	123	315	0.28
0.4	544	154	390	0.28

Graph 2. Relation between Air Pressure and Air Flow Rate

2. Evaluation of the Mecha Swing Nozzle (cont.)

Evaluation Method of Air Blow Capacity (Operating Time and Effective Range)

Air is injected to the surface which has been coated with grease for a certain time. After that, measure the surface area where the grease has been removed.

2. Evaluation of the Mecha Swing Nozzle (cont.)

Evaluation Method of Air Blow Capacity (Operating Time and Effective Range) Photos taken during the experiment

Pic.6. Flat Nozzle Evaluation Method

Pic.7. Mecha Swing Nozzle

After using the devices, measure the grease that was removed as shown below.

Pic.8. Result (Flat Nozzle)

Pic.9. Result (Mecha Swing Nozzle)

2. Evaluation of the Mecha Swing Nozzle

Evaluation results of the Operating Time and the Air Trace Width.

Table 4. Results at Distance : 50mm , Pressure : 0.3MPa

Unit : [mm]

Nozzle Type		Operating Time (sec)								
	0.5	1	2	3	4	5	10	20	30	
Flat Nozzle	45	52	62	63	61	60	61	65	66	
Mecha Swing Nozzle	50	60	110	130	160	190	190	200	200	

Table 5. Results at Distance : 50mm , Pressure : 0.4MPa

Unit : [mm]

Nozzle Type	Operating Time (sec)								
	0.5	1	2	3	4	5	10	20	30
Flat Nozzle	50	54	57	65	65	62	65	66	67
Mecha Swing Nozzle	90	110	140	170	190	200	210	210	220

Graph 3. Relation between Operating Time and Air Trace Width

Result : The effective range of the Mecha Swing Nozzle is three times wider than the flat nozzle.

2. Air Saving Technique using the Mecha Swing Nozzle

Air Saving Effect using the Mecha Swing Nozzle From the test results, we found out that using "one" Mecha Swing Nozzle is equivalent to using "three" Flat Nozzles.

Img.6. Three conventional Flat Nozzle

Img.7. One Mecha Swing Nozzle

Table 6. Air Saving Effect with the Mecha Swing Nozzle

(III case of I											
Setting Pressure (MPa)	Air Consum										
	Flat Nozzle	Mecha Swing Nozzle	Saving Air Quantity	Air Saving Rat							
0.3		1314	123	1191	90.6%						
0.4		1632	154	1478	90.6%						

(In case of Three Elat Negale and One Mecha Swing Negale)

Result:

It's a proven fact that you can reduce up to 90% of the air used by three flat nozzles with just one Mecha Swing Nozzle.

2. Conclusion

Conclusion of the test results of the Mecha Swing Nozzle

Air Saving Effect : Reduce up to 90% of Air used

Air Saving Effect is confirmed from the test results in our group.

Product Durability Durability Test in progress

Pic.10. Durability Test (setting pressure : 0.6MPa)

Supplement

Cost

Table 7. Initial (introduction) cost

Name of pozzla	Initial (introduction) cost							
Name of hozzie	1 unit	3 units	Total					
Flat Nozzle	\$20	\$60	\$60					
Mecha Swing Nozzle	\$107.5	-	\$107.5					

Table 8. Flow rates of using 3 Flat nozzles and using 1 Mecha Swing Nozzle

Set Pressure	Air Consumption (Flow Rate : L/min (ANR						
(MPa)	3 Flat Nozzles	1 Mecha Swing Nozzle					
0.3	1314	123					
0.4	1632	154					

Table 9. Initial & running cost (calcurated at 3cents per 1m³ of air)

Name of pozzla	Set Pressure		Running cost (operating time US\$)									
Name of hozzie	(MPa)	0 (at introduction time)	20	50	100	200	300	400	500	600	700	800
2 Elat Nozzlas	0.3	\$60	\$107.30	\$178.26	\$296.52	\$533.04	\$769.56	\$1,006.08	\$1,242.60	\$1,479.12	\$1,715.64	\$1,952.16
3 FIAL NOZZIES	0.4	\$60	\$118.75	\$206.88	\$353.76	\$647.52	\$941.28	\$1,235.04	\$1,528.80	\$1,822.56	\$2,116.32	\$2,410.08
1 Macha Swing Nazzla	0.3	\$107.50	\$111.93	\$118.57	\$129.64	\$151.78	\$173.92	\$196.06	\$218.20	\$240.34	\$262.48	\$284.62
I Mecha Swillg Nozzie	0.3	\$107.50	\$113.04	\$121.36	\$135.22	\$162.94	\$190.66	\$218.38	\$246.10	\$273.82	\$301.54	\$329.26

Result

Graph 4. Transition of Initial & running cost

<u>After using about 20 hours</u>, the running cost of the Mecha Swing Nozzle would be reduced than the cost of the flat nozzles.

Note: Losses such as service life or exchange time are not included in this trial calculation. It is a trial calculation of the introduction and running cost.